Jumat, 07 Oktober 2011

MENGENAL SUPERKONDUKTOR I SUHU KRITIK I MEDAN MAGNET KRITIK

Untuk lengkapnya download ja file nya Di Sini



MENGENAL SUPERKONDUKTOR


Superkonduktivitas suatu bahan bukanlah hal yang baru. Sifat ini diamati untuk yang pertama kalinya pada tahun 1911 oleh fisikawan Belanda H.K. Onnes, yaitu ketika ia menemukan bahwa air raksa murni yang didinginkan dengan helium cair ( suhu 4,2 K ) kehilangan seluruh resistansi listriknya. Sejak itu harapan untuk menciptakan alat-alat listrik yang ekonomis terbuka lebar-lebar. Bayangkan, dengan resistansinya yang nol itu superkonduktor dapat menghantarkan arus listrik tanpa kehilangan daya sedikitpun, kawat superkonduktor tidak akan menjadi panas dengan lewatnya arus listrik.
Kendala terbesar yang masih menghadang terapan superkonduktor dalam peralatan praktis sehari-hari adalah bahwa superkonduktivitas bahan barulah muncul pada suhu yang amatrendah, jauh di bawah 0 °C! Dengan demikian niat penghematan pemakaian daya listrik masih harus bersaing dengan biaya pendinginan yang harus dilakukan. Oleh sebab itulah para ahli sampai sekarang terus berlomba-lomba menemukan bahan superkonduktor yang dapat beroperasi pada suhu tinggi, kalau bisa ya pada suhu kamar.

SUHU KRITIK
Perubahan watak bahan dari keadaan normal ke keadaan superkonduktor dapat dianalogikan misalnya dengan perubahan fase air dari keadaan cair ke keadaan padat. Perubahan watak seperti ini sama-sama mempunyai suatu suhu transisis, pada transisi superkonduktor suhu ini disebut sebagai suhu kritik Tc, pada transisi fase ada yang disebut titik didih (dari fase cair ke gas) dan titik beku (dari fase cair ke padat). Pada transisi feromagnetik suhu transisinya disebut suhu Curie. Besaran fisis yang berkaitan dengan transisi superkonduktor adalah resistivitas bahan,

Pada suhu T > Tc bahan dikatakan berada dalam keadaan normal, ia memiliki resistansi listrik. Transisi ke keadaan normal ini bukan selalu berarti menjadi konduktor biasa yang baik, pada umumnya malah menjadi penghantar yang jelek, bahkan ada yang ekstrim menjadi isolator! Untuk suhu T < Tc bahan berada dalam keadaan superkonduktor. Di dalam eksperimen, pengukuran resistivitasnya dilakukan dengan menginduksi suatu sampel bahan berbentuk cincin, ternyata arus listrik yang terjadi dapat bertahan sampai bertahun-tahun. Resistivitasnya yang terukur tidak akan melebihi 10-25 ohm.meter, sehingga cukup beralasan bila resistivitasnya dikatakan sama dengan nol.

Perkembangan bahan superkonduktor dari saat pertama kali ditemukan sampai sekarang dapat diikuti pada tabel di bawah ini.

Bahan Tc (K) Ditemukan tahun
Raksa Hg (a ) 4,2 1911
Timbal Pb 7,2 1913
Niobium nitrida 16,0 1960-an
Niobium-3-timah 18,1 1960-an
Al0,8Ge0,2Nb3 20,7 1960-an
Niobium germanium 23,2 1973
Lanthanum barium
tembaga oksida 28 1985
Yttrium barium tembaga
oksida (1-2-3 atau YBCO) 93 1987
Thalium barium kalsium
tembaga oksida 125 1987

Keluarga superkonduktor yang terdiri dari unsur-unsur tunggal yang dipelopori oleh temuan Onnes, disebut superkonduktor tipe I atau superkonduktor konvensional, ada kira-kira 27 jenis dari tipe ini. Suatu hal yang menarik, bahwa unsur-unsur yang pada suhu kamar merupakan konduktor banyak diantara mereka yang tidak memiliki sifat superkonduktor pada suhu rendah, contohnya tembaga, perak dan golongan alkali.
Pada tahun 1960-an lahirlah keluarga superkonduktor tipe II, yang biasanya berupa kombinasi unsur molybdenum (Mo), niobium (Nb), timah (Sn), vanadium (V), germanium (Ge), indium (In) atau galium (Ga). Sebagian merupakan senyawa, sebagian lagi merupakan larutan padatan. Sifatnya agak berbeda dengan tipe I karena suhu kritiknya relatif lebih tinggi, sehingga tipe II ini sering disebut superkonduktor yang alot. Semua alat yang telah menerapkan superkonduktor dewasa ini menggunakan bahan tipe II ini, alasannya akan menjadi jelas kemudian.

Pada tahun 1985 di laboratorium riset IBM di Zurich, A.Muller dan G.Bednorz memulai era baru bagi ilmu bahan superkonduktor. Mereka menemukan bahwa senyawa keramik tembaga oksida dapat memiliki sifat superkonduktor pada suhu yang relatif tinggi, rekor suhu kritik yang saat ini sudah mencapai 125 K juga dipegang oleh golongan ini.
Perkembangan selanjutnya tampak agak seret, para ahli sendiri masih meributkan ada tidaknya batas suhu kritik yang mungkin dicapai. Ahli riset di Institut Teknologi California meramalkan bahwa suhu kritik superkonduktivitas tidak akan pernah melampaui 250 K, jadi masih cukup jauh di bawah suhu kamar. Apakah benar demikian, kita tunggu saja hasil-hasil penelitian berikutnya.

MEDAN MAGNET KRITIK
Tinggi rendahnya suhu transisi Tc dipengaruhi banyak faktor. Seperti tekanan yang dapat menurunkan titik beku air, suhu kritik superkonduktor juga bisa turun dengan hadirnya medan magnet yang cukup kuat. Kuat medan magnet yang menentukan harga Tc ini disebut medan kritik (Hc). Kita lihat grafik ketergantungan Tc terhadap kuat medan magnet pada gambar2.
Walaupun Pb bersuhu kritik normal (tanpa medan magnet) 7,2 K, apabila ia dikenai medan H = 4,8 ´ 104 A/m misalnya, suhu kritiknya turun menjadi 4 K. Artinya dengan medan sbesar itu pada suhu 5 K pun Pb masih bersifat normal. Medan kritiknya ini dapat dinyatakan dengan persamaan :
Hc(T) = Hc (0) [ 1 - (T/Tc)2 ]
Hc (0) adalah harga maksimum Hc yaitu harga pada suhu 0 K.
Medan kritik ini tidak harus berasal dari luar, tapi juga bisa ditimbulkan oleh medan internal, yaitu jika ia diberi aliran arus listrik. Untuk superkonduktor berbentuk kawat beradius r, arus kritiknya dinyatakan oleh aturan Silsbee :
Ic = 2 p . r . Hc
Jadi pada suhu tertentu ( T < Tc ) , bahan superkonduktor memiliki ketahanan yang terbatas terhadap medan magnet dari luar dan arus listrik yang bisa diangkutnya.
Kalau harga-harga kritik ini dilampaui, sifat superkonduktor bahan akan lenyap dengan sendirinya. Ambil contoh untuk kawat Pb beradius 1 mm pada suhu 4 K, agar ia tetap bersifat superkonduktor ia tidak boleh menerima medan magnet lebih besar dari 48000 A/m atau mengangkut arus listrik lebih dari 300 A. Pada ukuran dan suhu yang sama Nb3Sn mampu mengangkut 12500 A, oleh sebab itulah secara teknis superkonduktor tipe II lebih baik pakai.
Sebagai perbandingan YBCO pada suhu 77 K dapat mengangkut arus sebesar 530 A, cukup lumayan! Naiknya suhu operasi mempunyai nilai ekonomis, karena biaya pendinginan menjadi lebih murah dibandingkan helium cair (untuk menjaga suhu 4 K).

Satu liter He harganya US$ 4 (Rp.7000) sedangkan satu liter N2 cuma 25 cent (Rp.450), padahal dalam prakteknya penguapan 1 liter N2 setara dengan penguapan 25 liter He.

Kisah Mata Air Keabadian

Kisah ini diriwayatkan oleh Ats-Tsa’labi dari Imam Ali ra. Pada zaman dahulu hiduplah seorang hamba Allah SWT yang melebihkan kepada d...